
International Journal of Computer Science & Emerging Technologies (IJCSET) 193

Volume 1 Issue 2, August 2010

A Relationship Oriented Framework for Learning in

Structured Domains

Madhusudan Paul, Thamizh Selvam. D, P. Syam Kumar and Dr. R. Subramanian

Department of Computer Science, School of Engineering and Technology,

Pondicherry University, Puducherry, India

{msp.cse@gmail.com, dthamizhselvam@gmail.com, shyam.553@gmail.com and rsmanian.csc@pondiuni.edu.in}

Abstract: Most of the classical machine learning (ML) models

was developed to deal with non-structured domains of learning

where data in input domain is represented as fixed size vector of

properties. This kind of representation cannot always capture the

true nature of the data which are naturally represented in some

structured form like sequences and trees. Learning in structured

domains (SDs) is a new field of study which allows for a

generalization of ML approaches to the treatment of complex data,

offering both new impulses for theory and applications. Since

relationships are the key in SD learning, edges (relationships) are

more important than vertices (indivisible component of objects) in

SD learning. In the existing framework for graph processing of

artificial neural network models, vertices are given more

importance than edges. Again geometrical information of structured

data is not considered in the framework. In this paper, a new

framework for graph processing is proposed in which edges are

considered as key and also geometrical information is taken into

account.

Keywords: Artificial Neural Networks, Cascade Correlation

Learning, Feedforward Neural Networks, Learning in Structured

Domains, Recursive Neural Networks.

1. Introduction

In traditional machine learning, an input object in the input

domain is represented by a fixed-size vector of properties (or

features). Though this kind of representation is quite easy to

realize and process, sometimes it cannot completely capture

the “true nature” of the data which naturally presents itself in

a structured form, since some important contextual

information may be associated with the structure of the data

itself. While learning in structured domains is quite difficult

to realize and process, it is the generalized machine learning

approach to deal with complex data structures. A non-

structured domain can be thought as a special or restricted

case of structured domains. A domain of real valued vectors

can be treated as a special case of a domain of sequences of

real valued vectors (i.e., it is a domain of sequences, all of

size one), which in turn can be considered as a special case

of a domain of trees (i.e., a sequence can be treated as a tree

where all the internal nodes have a single child), which in

turn can be considered as a special case of a domain of

directed acyclic graphs (DAGs), and so on. Therefore,

focusing on structured domains, does not exclude the

possibility to exploit the traditional vector-based learning

models. In fact, traditional vector-based approaches are just

specific instances of a more general structure-based

framework.

In traditional machine learning approaches, graphs or trees

are mapped into simpler representations, like vectors.

However the performances of these approaches differ largely

with the application at hand. In fact, the preprocessing phase

is quite problem dependent and the implementation of this

approach usually requires a time-consuming trial and error

procedure. Moreover, the inherent topological information

contained in structural representations might be partially lost.

 Recently, new connectionist models, capable of directly

elaborating trees and graphs without a preprocessing phase

were proposed [1]. These have been extended using support

vector machines [2]–[5], recursive neural networks [6] – [13]

and SOMs [14] to structured data.

 In the family of recursive neural networks (RNNs),

constructive approach, recursive cascade correlation (RCC),

has been introduced in [6]. RNN models realize an adaptive

processing (encoding) of recursive (hierarchical) data

structures. A recursive traversal algorithm is used to process

(encode) all the graph vertices, producing state variable

values for each visited vertex. In fact, all of these approaches

can handle only sub-classes of graphs, not general graphs

[i.e., rooted trees, directed acyclic graphs (DAG), and

directed positional acyclic graphs (DPAG)]. Very recently

as a first attempt, Neural Networks for Graphs (NN4G) [16]

introduced the concept to the treatment of general class of

graphs. It is an incremental approach where state values of

vertices are updated gradually using cascade correlation

learning algorithm. The principle idea behind the framework

of the models is to obtain a flat description of the

information associated to each vertex of graphs. In our

proposed framework the idea is to obtain a flat description of

the information associated to each edge instead of each

vertex of graphs.

The rest of the paper is organized as follows. Section 2

introduces the preliminaries and notations on the domains. In

Section 3, existing framework for graph processing is

discussed. Our new proposed framework is explained in

Section 4. The proposed framework is again enhanced in

Section 5 considering geometrical information. Finally,

future directions and conclusion is given in Section 6.

2. Preliminaries and notations

 A labeled graph (or graph) is a quadruple ,

where V is the nonempty finite set of vertices/nodes, and E is

the finite set of edges: The last two

items and associate a vector of real numbers to each

vertex and edge, respectively. In fact, and are

mappings as and , where

and are the sets of vectors of real numbers with

dimension and , respectively. Vertex labels and edge

labels are denoted by , and (or) respectively. The

symbol with no further specification represents the vector

obtained by stacking together all the labels of the graph. The

mailto:%7bmsp.cse@gmail.com
mailto:dthamizhselvam@gmail.com
mailto:shyam.553@gmail.com

International Journal of Computer Science & Emerging Technologies (IJCSET) 194

Volume 1 Issue 2, August 2010

symbol | · | denotes the cardinality or the absolute value,

according to whether it is applied to a set or to a number.

 If is directed graph, each edge of is an ordered

pair of vertices, where is the children or successor of the

parent or predecessor . For undirected graph, the ordering

between and in is not defined, i.e.,

= . Vertex and edge are said to be incident with (on

or to) each other, if vertex is an end vertex of edge . The

number of edges incident on a vertex with self-loops

counted twice is called the degree of vertex and denoted

by . A cycle is a finite alternating sequence of vertices

and edges beginning and ending with same vertex such that

each edge is incident with the vertices preceding and

following it and no edge and vertex (except initial and final

vertex) are repeated. A graph with no cycle is called an

acyclic graph.

 Given a set of labeled graphs and a graph , we

denote the set of vertices of as and the set of its

edges as . Given a vertex , the vertices adjacent to

(or neighbors of) are those connected to it by an edge and

are represented by , i.e

. Hence, .

Similarly, given an edge , the edges adjacent to

(or neighbors of) are those edges having a common end

vertex with the given edge and are denoted by , i.e.,

, where

 is the set of two end vertices of .

If the graph is directed, the neighbors of (or), either

belong to the set of its children or successors (or)

or to the set of its parents or predecessors (or).

 A graph is said to be positional if a function is defined

for each vertex and assigns a different position to

each neighbor , otherwise the graph is non-

positional. Thus, combining the properties described so far it

is possible to specify various graph categories: Directed

Acyclic Graphs (DAGs), Directed Positional Acyclic Graphs

(DPAGs) and so on.

 Here we assume a class of input structured patterns as

labeled graphs. Let a target function be defined as

 (or , i.e., maps a graph

 and one of its vertex (or edge) into a vector of real

numbers. Our objective is to approximate the target function

. More precisely, in classification problems codomain of

is (i.e., vectors of natural numbers), whereas in

regression problems the codomain is . In graph

classification, does not depend on (or), i.e. only one

target is given for each graph. In vertex (or edge)

classification problems, each vertex (or edge) in a given set

has a target to be approximated.

 In this paper we face the problem of devising neural

network architectures and learning algorithms for the

classification of structured patterns, i.e., labeled graphs.

Fig. 1 reports the standard way to approach this problem

using a standard neural network. Each graph is encoded as a

fixed-size vector which is then given as input to a

feedforward neural network for classification. This approach

is motivated by the fact that neural networks only have a

fixed number of input units while graphs are variable in size.

The encoding process is usually defined in advance and does

not depend on the classification task. It is a very expensive

trial and error approach.

 Standard and recurrent neurons are not suitable to deal

with labeled structures. In fact, neural networks using this

kind of neurons can deal with approximation and

classification problems in structured domains only by using a

complex and very unnatural encoding scheme which maps

structures onto fixed-size unstructured patterns or sequences.

To solve this inadequacy of standard and recurrent neural

networks the generalized recursive neuron was proposed in

[6].

 The generalized recursive neuron is an extension of the

recurrent neuron where instead of just considering the output

of the unit in the previous time step, we consider the outputs

of the unit for all the vertices which are pointed by the

current input vertex.

3. General Framework for Graph Processing

To define a general framework for graph processing, we

need to implement a function to compute

an output for each pair . The principle idea is

to derive a flat description of the information associated to

each vertex . An object of the domain of interest can be

Standard Neural

Network

.

.

.

.

.

.

Input Graph

Encoding

 Vectorial

Representation

Figure 1. Classification of graphs by standard

neural networks

International Journal of Computer Science & Emerging Technologies (IJCSET) 195

Volume 1 Issue 2, August 2010

represented by a vertex and its description is represented by a

vector of real numbers called state denoted by ,

where the state dimension is a predefined parameter. In

order to obtain a distributed and parallel processing

framework, the states are computed locally at each vertex. A

reasonable choice is to design as the output of a

parametric state transition function , that depends on the

vertex label and on the relationships between and its

neighbors

where is the set of neighbors of vertex , and

 are the sets containing the states and the labels of the

vertices in respectively, and is the set of the

edge labels between and its neighbors (Fig. 2).

Once each node has a vectorial representation, it can also

be assigned an output , evaluated by another parametric

function , called output function

Eqns. (1) and (2) define a method to produce an output

) for each vertex of the graph .

Moreover, the symbolic and subsymbolic information

associated with the vertices is indeed automatically encoded

into a vector by the state transition function. We can show

the computation graphically substituting all of the vertices

with “units” that compute the function . The “units” are

connected according to graph topology. The resultant

network is called the encoding network and will be the same

topology as the input graph. Since the same parametric

functions are applied to all the vertices, the units of the same

type share the same set of parameters.

Let and be the vectorial functions obtained by

stacking all the instances of and , respectively. Then

Eqns. (1) and (2) can be rewritten as

and

where represents the vector containing all the labels and

collects all the states. Eq. (3a) defines the global state ,

while Eq. (3b) computes the output. It is relevant to mention

that Eq. (3a) is recursive with respect to the state , thus is

well defined only if Eq. (3a) has a unique solution. In

conclusions, the viability of the method depends on the

particular implementation of the transition function .

In our supervised framework, for a subset of

vertices, called supervised vertices, a target value is

defined for each . Thus an error signal (usual sum of

squared error) can be specified as,

This signal drives an error backpropagation procedure that

adapts the parameters of and so that the function

realized by the network can approximate the targets,

i.e. .

In practice, Eq. (1) is well suited to process positional

graphs, since each neighbor position can be associated to a

specific input argument of function . In non–positional

graphs, this scheme introduces an unnecessary constraint,

since neighbors should be artificially ordered. A reasonable

solution consists in calculating the state as a sum of

“contributions”, one for each of its neighbors. Thus, state

transition function can be rewritten as

where is the -th neighbor and is the number of

neighbors of . Several possible implementations of the

functions (or) and can be selected, e.g., Recursive

Neural Networks(RNNs), Graph Neural Networks(GNNs),

and recently developed NN4G [16]. RNNs, GNNs and

NN4Gs differ in the implementation of the state transition

function and in the class of graphs that can be processed.

4. Relationship oriented framework for Graph

Processing

In the previous framework for graph processing, vertices

are given more importance, i.e., state value of a vertex is

computed based on the information associated with it and its

neighbors. In our new proposed framework, state value is

computed for each edge (instead of each vertex) on the

information associated with it and its neighbors.

To define edge based framework for graph processing we

must implement the function instead of

 to compute an output for each pair

. The principle idea behind this is to obtain a flat

description of the information associated to each edge

instead of each vertex . The description of an edge can be

represented by a state value denoted by , where the

Neighbors of node 4 4

6

2

7

1

3

9

5

8

Figure 2. The state depends on the

information in its neighbors

International Journal of Computer Science & Emerging Technologies (IJCSET) 196

Volume 1 Issue 2, August 2010

state dimension is a predefined parameter. To obtain a

distributed and parallel processing framework, the states are

computed locally at each edge. The state value can be

designed as the output of a parametric state transition

function (instead of), which depends on the edge label

 and on the labels of vertices adjacent to the edge and its

neighbors

where is the set of neighbors of edge e, and

are the sets containing the states and the labels of the edges

in respectively, and is the set containing the

labels of adjacent vertices of the edge (Fig. 3).

Again each edge has a vectorial representation, it can also

be assigned an output , evaluated by another parametric

function (instead of), called output function

Eqns. (6) and (7) define a method to produce an output

) for each edge of the graph .

The symbolic and sub-symbolic information associated

with the edges are automatically encoded into a vector by the

state transition function . The encoding network will be the

same topology as the input graph. The units of the same type

share the same set of parameters, since the same parametric

functions are applied to all the edges.

Similar to vertex based framework, we can define the

functions and by stacking all the instances of and ,

respectively and Eqns. (6) and (7) can be rewritten as

where represents the vector containing all the labels and

collects all the states. Eq. (8a) defines the global state ,

while Eq. (8b) computes the output. Note that Eq. (8a) is

recursive with respect to the state , thus is well defined

only if Eq. (8a) has a unique solution. The method differs

from one implementation of the transition function () to

another.

In the supervised framework, for a subset of edges,

called supervised edges, a target value is defined for

each . Thus an error signal can be specified as,

This signal drives an error backpropagation procedure that

adapts the parameters of and so that the function

realized by the network can approximate the targets, i.e.,

.

A reasonable solution (like previous framework) consists

in calculating the state as a sum of “contributions”, one

for each of its neighbors. Thus, state transition function can

be rewritten as

where is the -th neighbor and is the number of

neighbors of . New neural network models like RNNs,

GNNs can also be developed to implement the functions

 (or) and .

5. Learning in Geometrical Structured Domains

There are certain application domains where the “true

nature” of the data not only depends on the hierarchical

relationship of the data but also on the geometrical

structure/topology of the data which naturally presents itself

in a geometrical structured form and some contextual

information is associated with the geometrical structure of

the data itself. Quantitative structure-property/activity

relationships (QSPR/QSAR) are fundamental aspects in

chem.-informatics, where the aim is to correlate chemical

structure of molecules with their properties (or biological

activity) in order to achieve prediction. Since each molecule

is a 3-D geometrical structure, the 3-D geometrical structure

itself should have some impact on QSPR/QSAR. If we can

develop a model that can learn geometrical topology, then

the accuracy of QSPR/QSAR analysis of chemical

1 7

3

2

where , . . .

Figure 3. The state depends on the

information in its neighbors

4

5

6 8

International Journal of Computer Science & Emerging Technologies (IJCSET) 197

Volume 1 Issue 2, August 2010

compounds may be improved more. We can find other

applications also where learning in geometrical structured

domains (GSD) can be incorporated to get better

performance.

In Eq. (1), the label of vertex represents the

information associated with the corresponding indivisible

component object of structured data. In fact, is a fixed

size vector of real numbers where each element of

represents a property or feature of the component object.

Each component object itself is an unstructured (indivisible)

data whereas these component objects are interconnected

among them to form a structured data as a whole.

In both the frameworks of graph processing, geometrical

information of structured data is not incorporated to compute

the state values of vertices, which is essential to capture the

true nature of geometrical structured data; in fact, only

hierarchical nature of structured data is captured. We can

incorporate relative coordinate information (if available) of

each component object of structured data to calculate the

state value of the corresponding vertex. Hence, Eq. (1) could

be changed as

and Eq. (6) could be rewritten as

where and , are the vectors of coordinate of

vertices and respectively. Based on dimension or size of

vector and/or we can generalize the model into

- dimensional geometrical structured data. If input domain

of data is 2-D geometrical structure, the size of and/or

will be 2. Similarly, the size of and/or will be 3 when

the data of input domain is 3-D geometrical structure.

6. Future Directions and Conclusion

Though the new framework proposed in this paper, can

capture the true nature of structured data, the success of the

framework still lie on the proper implementation of the

framework. Hence further research could be done on the

development of new artificial network models.

Again the development of model for learning in

geometrical structured domains (GSD) needs to investigate

on the integration of symbolic and sub-symbolic approaches.

The integration of symbolic and sub-symbolic approaches is

a fundamental research topic for the development of

intelligent and efficient systems capable of dealing with tasks

whose nature is neither purely symbolic nor sub-symbolic. It

is common opinion in the scientific community that a

extensive variety of real-world problems require hybrid

solutions, i.e., solutions combining techniques based on

neural networks, fuzzy logic, genetic algorithms,

probabilistic networks, expert systems, and other symbolic

techniques. A very popular view of hybrid systems is one in

which numerical data are processed by a sub-symbolic

module, while structured data are processed by the symbolic

counterpart of the system. Unfortunately, because of the

different nature of numerical and structured representations,

a tight integration of the different components seems to be

very difficult.

Learning in structured domains can be used in various

fields of applications such as natural language processing,

image processing, speech processing, computer vision,

chem.-informatics, bioinformatics, etc. Hence, a simple

solution for general class of graphs is anticipated. The NN4G

model is a relatively simple solution for dealing with fairly

general classes of graphs by sub-symbolic approaches;

similar solution for geometrical structures is also expected.

We hope that the introduction of simple and general

approaches (e.g., NN4G) in structured domains will be

attracted to ML researchers for widespread applications.

References

[1] B. Hammer and J. Jain, “Neural methods for non-

standard data,” in Proceedings of the 12th European

Symposium on Artificial Neural Networks,

M.Verleysen, Ed., 2004, pp. 281–292.

[2] R. Kondor and J. Lafferty, “Diffusion kernels on

graphs and other discrete structures,” in Proc. 19th

International Conference on Machine Learning

(ICML2002), C. Sammut and A. e. Hoffmann, Eds.

Morgan Kaufmann Publishers Inc, 2002, pp. 315–322.

[3] T. G¨artner, “Kernel-based learning in multi-relational

data mining,” ACM SIGKDD Explorations, vol. 5, no.

1, pp. 49–58, 2003.

[4] P. Mah´e, N. Ueda, T. Akutsu, P. J.-L., and J.-P.Vert,

“Extensions of marginalized graph kernels,” in Proc.

21th International Conference on Machine Learning

(ICML2004). ACM Press, 2004, p. 70.

[5] J. Suzuki, H. Isozaki, and E. Maeda, “Convolution

kernels with feature selection for natural language

processing tasks.” in ACL, 2004, pp. 119–126.

[6] A.Sperduti and A. Starita, “Supervised neural networks

for the classification of structures,” IEEE Transactions

on Neural Networks, vol. 8, pp. 429–459, 1997.

[7] P. Frasconi, M. Gori, and A. Sperduti, “A general

framework for adaptive processing of data structures,”

IEEE Transactions on Neural Networks, vol. 9, no. 5,

pp. 768–786, 1998.

[8] M. Bianchini, M. Gori, and F. Scarselli, “Processing

directed acyclic graphs with recursive neural

networks,” IEEE Trans. Neural Netw., vol. 12, no. 6,

pp. 1464–1470, Nov. 2001

[9] A.Micheli, D. Sona, and A. Sperduti, “Contextual

processing of structured data by recursive cascade

correlation,” IEEE Trans. Neural Netw., vol. 15, no. 6,

pp. 1396–1410, Nov. 2004.

[10] M. Gori, G. Monfardini, and F. Scarselli, “A new

model for learning in graph domains,” in Proc.

International Joint Conference on Neural Networks

(IJCNN2005), 2005, pp. 729–734.

[11] F. Scarselli, S. Yong, M. Gori, M. Hagenbuchner, A.

Tsoi, and M. Maggini, “Graph neural networks for

ranking web pages,” in Proc. of the 2005

IEEE/WIC/ACM Conference on Web Intelligence

(WI2005), 2005, pp. 666–672.

[12] B. Hammer, A. Micheli, and A. Sperduti, “Universal

approximation capability of cascade correlation for

structures,” Neural Comput., vol. 17, no. 5, pp. 1109–

1159, 2005.

[13] M. Bianchini,M. Gori, L. Sarti, and F. Scarselli,

“Recursive processing of cyclic graphs,” IEEE Trans.

Neural Netw., vol. 17, no. 1, pp. 10–18, Jan. 2006.

International Journal of Computer Science & Emerging Technologies (IJCSET) 198

Volume 1 Issue 2, August 2010

[14] M. Hagenbuchner, A. Sperduti, and A. C. Tsoi, “A

self-organizing map for adaptive processing of

structured data,” IEEE Transactions on Neural

Networks, vol. 14, no. 3, pp. 491–505, May 2003.

[15] M. Bianchini, M. Maggini, L. Sarti, and F. Scarselli,

“Recursive neural networks for processing graphs with

labelled edges: Theory and applications,” Neural

Networks - Special Issue on Neural Networksand

Kernel Methods for Structured Domains, vol. 18, pp.

1040–1050, October 2005.

[16] AlessioMicheli, “Neural Network for Graphs: A

Contextual Constructive Approach,” IEEE

Transactions on Neural Networks, vol. 20, no. 3, march

2009.

[17] S. Fahlman and C. Lebiere, “The cascade-correlation

learning architecture,” Carnegie Mellon Univ.,

Pittsburgh, PA, Tech. Rep. CMU-CS-90-100, Aug.

1990.

[18] A. K¨uchler and C. Goller, “Inductive learning in

symbolic domains using structure–driven recurrent

neural networks,” in Advances in Artificial

Intelligence, G. G¨orz and S. H¨olldobler, Eds. Berlin:

Springer-Verlag, 1996, pp. 183–197.

[19] V. Di Massa, G. Monfardini, L. Sarti, F. Scarselli, M.

Maggini, and M. Gori, “A comparison between

recursive neural networks and graph neural networks,”

in Proc. World Congr. Comput. Intell./Int. Joint Conf.

Neural Netw., 2006, pp. 778–785.

[20] Ethem Alpaydin, “Introduction to Machine Learning,”

Prentic-Hall of India, 2005.

[21] Martin T. Hagan, Howard B. Demuth, Mark beale,

“Neural Network Design,” Cengage Learning India,

1996.

[22] Simon Haykin, “Neural Networks, A Comprehensive

Foundation,” 2nd ed. Pearson Education, 2006.

[23] Mohamad H. Hassoun, “Fundamentals of Artificial

Neural Networks,” Prentic-Hall of India, 2008.

[24] Duance Hanselman, Bruce Littlefield, “MASTERING

MATLAB 7,” Pearson Education, 2005.

[25] Jue Wang and Qing Tao, “Machine Learning: The State

of the Art,” IEEE Intelligent Systems, 2008.

Author Biographies

MADHUSUDAN PAUL He is a final year student of M.Tech. (CSE) in the

Department of Computer Science, School of Engineering and Technology,

Pondicherry University, Puducherry, India. He received his M.Sc. (CS) in

2008 from Visva-Bharati University, Santiniketan, West Bengal, India and

B.Sc. (CS) in 2006 from University of Calcutta, Kolkata, West Bengal,

India. His research interests include Machine Learning, Soft Computing, and

Automata Theory.

THAMIZH SELVAM. D He received his B.Sc., Computer Science and

M.Sc., Computer Sciences from Pondicherry University, Puducherry, India

in 2000 and 2003 respectively. He received his M.Phil., in Computer

Science from Periyar University, Tamilnadu, India in 2008. Currently, he is

a pursuing his Ph.d., in Computer Science and Engineering from

Department of Computer Science, School of Engineering, Pondicherry

University, Puducherry. His field of research includes Distributed

Algorithms, Peer-to-Peer Networks, and Overlay Network Structures.

P. SYAM KUMAR He received his B.Tech., (CSE) from JNTU,

Hyderabad, India and M.Tech., (CST) from Andhra University,

Visakhapatnam, India in 2003 and 2006 respectively. His research interests

include Distributed Computing and Cloud Computing.

Dr. R. SUBRAMANIAN He is currently the Professor and Head of

Department of Department of Computer Science, School of Engineering,

Pondicherry University, Puducherry, India. He received his B.Sc.,

Mathematics from Madurai Kamaraj University, Madurai, India in 1982. He

received his M.Sc., Mathematics and Ph.D., in Computer Science and

Engineering from IIT Delhi in 1984 and 1989. He has in his credit around

20 research publications in peer-scholarly research publications in both

National and Internal Journals and Conferences. His research interests

include Parallel and Distributed Algorithm, Evolutionary Algorithms and

Robotics

